Voting Data-Driven Regression Learning for Accelerating Discovery of Advanced Functional Materials and Applications to Two-Dimensional Ferroelectric Materials

Voting Data-Driven Regression Learning for Accelerating Discovery of Advanced Functional Materials and Applications to Two-Dimensional Ferroelectric Materials

Xing-Yu Ma, Hou-Yi Lyu, Xue-Juan Dong, Zhen Zhang, Kuan-Rong Hao, Qing-Bo Yan,* and Gang Su*

  Regression machine learning is widely applied to predict various materials. However, insuffiffifficient materials data usually leads to poor performance. Here, we develop a new voting data-driven method that could generally improve the performance of the regression learning model for accurately predicting properties of materials. We apply it to investigate a large family (2135) of two-dimensional hexagonal binary compounds focusing on ferroelectric properties and fifind that the performance of the model for electric polarization is indeed greatly improved, where 38 stable ferroelectrics with out-of-plane polarization including 31 metals and 7 semiconductors are screened out. By unsupervised learning, actionable information such as how the number and orbital radius of valence electrons, ionic polarizability, and electronegativity of constituent atoms affffect polarization was extracted. Our voting data-driven method not only reduces the size of materials data for constructing a reliable learning model but also enables one to make precise predictions for targeted functional materials.